Preliminary communication

Mössbauer and infrared spectra of some 1/1 and 1/2 sulphoxide complexes of diphenyltin dichloride

R.S. RANDALL, R.W.J. WEDD and J.R. SAMS^{*} Department of Chemistry, University of British Columbia, Vancouver 8 (Canada) (Received March 30th, 1971)

Many addition compounds of organotin(IV) halides with Lewis bases are known. Almost all such complexes of the diorganotin dihalides with monodentate bases isolated thus far have 1/2 stoichiometry. *i.e.*, $R_2 Sn X_2 \cdot 2L$, with hexacoordination about the tin atom¹. The only 1/1 adducts which seem to have been reported are those of Me₂SnCl₂ and Me₂SnBr₂ with N,N-dimethylformamide (DMF) and a few p-substituted aromatic carbonyl donors². Tanaka and Kamitani³ have reported a mixture of 1/1 and 1/2 complexes of Me₂SnCl₂ with dimethylselenoxide (DMSeO), but the former was not isolated in pure form.

We have obtained 1/1 adducts of $Ph_2 SnCl_2$ with some sulphoxide donors when a stoichiometric quantity of base is added to a chloroform solution of the tin compound, and the solvent removed under reduced pressure. When 100% or greater excess of base is employed, 1/2 compounds are obtained. Microanalytical data and melting points are given in Table 1. That the 1/1 complexes are true addition compounds and not equimolar mixtures of Ph_2SnCl_2 and the corresponding 1/2 adduct is unequivocal in view of the melting points (Table 1), ¹¹⁹ Sn Mössbauer parameters (Table 2) and infrared spectra (Table 3).

TABLE 1

Compound	Found (%)		Calcd. (%)		М.р. ([°] С)
	C	H	C	Н	
PhoSnClo · MeoSO	39.89	3.79	39.83	3.82	8082
PhoSnClo ProSO	45.01	5.08	45.20	5.06	7577
PhoSnClo · BuoSO	47.45	5.44	47.44	5.58	100-102
PhoSnClo · (CHo)ASO	42.65	4.16	42.88	4.05	106108
PhoSnClo · 2MeoSO	38.04	4.34	38.41	4.44	132-135
PhaSnCla · 2PraSO	47.22	6.12	47.06	6.26	105-108
Ph2SnCl2 - 2Bu2SO	49.74	6.61	50.29	6.94	109-111
$Ph_2SnCl_2 - 2(CH_2)_4SO$	43.27	4.96	43.48	4.75	131-134

ANALYTICAL DATA AND MELTING POINTS

*To whom correspondence should be addressed.

J. Organometal. Chem., 30 (1971) C19-C21

MOSSBAUER DATA FOR Ph ₂ SuCl ₂ ADDUCTS AT 80 ⁻ K						
Compound	IS a,b	QS ^a	Γ_{I}^{a}	Γ_2^a		
Ph ₂ SnCl ₂	1.37	2.83	0.78	0.79		
Ph ₂ SnCl ₂ ·Me ₂ SO	1.21	3.06	0.90	0.91		
Ph ₂ SnCl ₂ · (CH ₂) ₄ SO	1.23	2.91	0.87	0.83		
Ph2SnCl2 Pr2SO	1.27	3.01	0.83	0.86		
$Ph_2SnCl_2 - Bu_2SO$	1.25	3.20	0.96	0.98		
$Ph_2SnCl_2 \cdot 2Me_2SO$	1.30	3.86	0.75	0.82		
$Ph_2SnCl_2 \cdot 2(CH_2)_4SO$	1.24	3.76	0.76	0.67		
Ph ₂ SnCl ₂ ·2Pr ₂ SO	1.24	3.86	0.88	0.82		
$Ph_2SnCl_2 \cdot 2Bu_2SO$	1.20	3.65	0.87	0.84		

TABLE 2

^a In mm/s, ± 0.05 mm/s. ^b Relative to SnO₂ at 80°K; a Ba¹¹⁹SnO₃ source at room temperature was employed.

TABLE 3

RELEVENT INFRARED ABSORPTIONS IN THE 1200-250 cm⁻¹ REGION^d

Compound	ν(S-O)	$\Delta \nu$ (S-O) b	v(Sn-O)	v(Sn-Cl)
Ph ₂ SnCl ₂				356s, 350s
Ph ₂ SnCl ₂ · Me ₂ SO	951 vs	96	421(sh), 417s, 414(sh)	328s, 322(sh)
Ph2SnCl2 · (CH2)ASO	940 vs	80	380m, 376m, 372m	336s, 331(sh), 324m
PhoSnClo ProSO	938 vs	80	443s, 439(sh), 432m	328s, 321s, 317(sh)
Ph2SnCl2 · Bu2SO	931 vs	97	419s, 416s, 407(sh)	329(sh), 322s, 319s
Ph_SnCl_ · 2Me_SO	946 vs	101	418s. 408(sh)	_
$Ph_2SnCl_2 \cdot 2(CH_2)_4SO$	952 vs	-58	378(sh), 374s, 367m	~
PhySnCl, 2PrySO	938 vs	80	416s. 413s	-
Ph2SnCl2 · 2Bu2SO	935 vs	93	419(sh), 415s, 410m	-
• • •••••		-		

0

^aSamples run as nujol mulls between CsI plates. All values in cm⁻¹. ^b $\Delta\nu$ (S-O) is ν (S-O) for the neat free ligand minus $\nu(S-O)$ for the complex.

The 1/1 derivatives show quadrupole splitting values lying between those for Ph_2SnCl_2 and the 1/2 adducts, with no significant line broadening. Because of the large difference in splitting observed for Ph_2SnCl_2 and for the 1/2 complexes, mixture of the two would show either a four-line Mössbauer spectrum or an extremely broad apparent doublet. In all cases the isomer shift decreases on complexation, indicating a lower s-electron density at the tin nucleus than in the neat Ph_2SnCl_2 . The lower isomer shift in the complexes could be due to an increase in s-electron withdrawal from tin, an increase in p- and/or d-electron donation to tin (which would enhance shielding of the s electrons), or both. The 1/1adducts show essentially the same isomer shift as that reported⁴ for Ph_2SnCl_3 (1.25 mm/s However, the shifts for the 1/2 derivatives are significantly lower than for Ph₂SnCl₄²⁻ $(1.44 \text{ mm/s})^5$.

The IR spectra (Table 3) show substantial lowering of the S-O stretching frequencies on complexation. If the shift in $\nu(S-O)$ is taken as a measure of the donoracceptor interaction strength^{3,6}, then such interaction appears about equally strong for corresponding 1/1 and 1/2 adducts. On the other hand, the bands assignable to v(Sn-O)show considerable variation. For both complexes of $(CH_2)_4$ SO, the Sn-O vibration is some 40 cm⁻¹ lower than for the Me₂SO and Bu₂SO adducts. The Pr₂SO complexes are the

J. Organometal. Chem., 30 (1971) C19-C21

only ones showing a significant change in $\nu(Sn-O)$ between 1/1 and 1/2 derivatives. The reason for this shift is not clear at present.

All the 1/1 adducts, which presumably have trigonal bipyramidal structures, show strong, complex bands at about 330 cm⁻¹ which we assign to Sn–Cl vibrations. $Me_2SnCl_2 \cdot DMF^2$ shows two Sn-Cl bands at 309 and 258 cm⁻¹, but only $v_{as}(Sn-Cl)$ is found for Me₂SnCl₂ · DMSeO³. This had led Tanaka^{2,3} to assume the donor molecule occupies an apical position in the former and an equatorial position in the latter. The complexity of the Sn-Cl bands observed here, together with the fact that a band at ~ 260 cm⁻¹ could well be obscured by the strong $\nu_{as}(Sn-C)$ absorption, precludes any such structural assignments in these cases. It seems likely that the phenyl groups occupy equatorial positions, as the methyl groups do in the Me_2SnCl_3 ion⁷, but spectra in the region below 250 cm⁻¹ (not presently accessible to us) will be needed to clarify this point.

For the 1/2 complexes, the Mössbauer quadrupole splittings lead us to assign an octahedral structure with trans-phenyl groups, as a cis-Ph₂ arrangement should give a splitting ≤ 2 mm/s. In the context of Mössbauer spectroscopy, *cis* and *trans* arrangements of the more electronegative ligands are essentially degenerate, and either will give approximately the same splitting. The IR spectra are not helpful, since none of the present 1/2 complexes shows a band attributable to ν (Sn-Cl) above 250 cm⁻¹. However, on the basis of detailed far-infrared data, Tanaka⁸ has postulated a *cis*-chlorine, *cis*-oxygen configuration for Ph₂SnCl₂ · 2Me₂SO. This is consistent with the recently determined X-ray structure of Me₂SnCl₂ \cdot 2Me₂SO⁹, and unlike that of Me₂SnCl₂ \cdot 2C₅H₅NO in which all like groups are mutually trans¹⁰.

Further studies on these and related complexes are in progress.

ACKNOWLEDGMENT

Financial support from the National Research Council of Canada is appreciated.

REFERENCES

- 1 H.C. Clark and R.G. Goel, J. Organometal. Chem., 7 (1967) 263.
- 2 G. Matsubayashi, T. Tanaka and R. Okawara, J. Inorg. Nucl. Chem., 30 (1968) 1831; G. Matsubayashi, N. Nishii and T. Tanaka, Bull. Chem. Soc. Japan, 42 (1969) 2369.
- 3 T. Tanaka and T. Kamitani, Inorg. Chim. Acta, 2 (1968) 175.
- 4 N.W.G. Debye, E. Rosenberg and J.J. Zuckerman, J. Amer. Chem. Soc., 90 (1968) 3234.
- 5 B.W. Fitzsimmons, N.J. Seeley and A.W. Smith, J. Chem. Soc., A, (1969) 143. 6 R.W.J. Wedd and J.R. Sams, Can. J. Chem., 48 (1970) 71.
- 7 F.B. Einstein and B.R. Penfold, J. Chem. Soc., A, (1968) 3019.
- 8 T. Tanaka, Inorg. Chim. Acta, 1 (1967) 217.
- 9 N.W. Isaacs and C.H.L. Kennard, J. Chem. Soc., A, (1970) 1257.
- 10 E.A. Blom, B.R. Penfold and W.T. Robinson, J. Chem. Soc., A, (1969) 913.

J. Organometal. Chem., 30 (1971) C19-C21